

Space-based secure connectivity initiative: state of play

Agenda

14:00-14:20	 Opening by the Commission Keynote speech from the Director General of DEFIS Keynote speech from the Director General of CNECT
14:20-15:40	 Main building blocks Presentation from the Commission (40') Feedback and discussion with Member States (40')
15:40-15:50	Break
15:50-16:20	 Preliminary analysis of exploitation models Presentation from the Commission (15') Feedback and discussion with Member States (15')

Upcoming activities 16:20-17:00

Main building blocks

A long-term, global, multi-orbital, secure architecture, built on GOVSATCOM and EuroQCI

Underlying game changing principles

Multi-orbital constellation: combining LEO, GEO, MEO

Secure: Strong encryption (Quantum), cyber resilience, proactive and reactive defence against cyber and RF threats, operational cybersecurity (SOC/GSMC)

Coverage: throughout Europe, and where strategic interest, e.g. Arctic

Innovative: system must integrate innovative/disruptive technologies and services, valorising European New Space

Scalable: adaptable to demand growth

Synergistic: combining/complementing existing space and terrestrial infrastructures

Long-term approach: operationally and commercial viability

A space-based connectivity system designed, built, launched and operated by European stakeholders

Growing political consensus for an EU secure connectivity system

Knowledge-building

Knowledge-building

Phasing

 Mission Consolidation January High-level multi-orbital constellation architecture • Frequencies April • Preliminary analysis on exploitation model • Approach to the integration of EuroQCI and GOVSATCOM hub • Synergies with Space Programme May • Service provision and exploitation models • Space and ground segment design December • Security requirements Cost estimation $\langle \rangle$ European

8

Commission

Mission consolidation: use cases collected and injected in high-level architecture design

Extracts from current work document

- Two-fold approach combining
 - Top down: Overall market assessment and demand trends
 - Bottom up: identification of applications for each use case and collection/consolidation of User needs and requirements for each of these applications
- The use cases and user needs are derived from three main streams:
 - The use cases and user needs for governmental and institutional users (GovSatCom),
 - The use cases and user needs for mass-market users (Broadband and 5G/B5G),
 - The use cases and user needs derived from EuroQCI,
- First results shared mid-March in Milestone Review Meeting User cases are now injected in system trade-off and architecture design

The user requirements have been characterised against 7 criteria

Security shield for Europe

Governmental use cases:

CONNECTING KEY INFRASTRUCTURES

Governmental & Institutional secure communications (Embassies, EUROPOL, ...)

> Management of Infrastructures (air, rail, road, traffic management

Galileo (augmentation), **Copernicus (data relay)**

Command and control of smart grids and M2M (energy, finance, health, data centres...)

CRISIS MANAGEMENT AND EXTERNAL **ACTIONS**

Civil protection

CFSP- CSDP – National missions

(search and rescue)

Humanitarian aid

Telemedicine

Maritime emergencies

SURVEILLANCE

Border and remote areas surveillance

Remote Piloted Aircraft systems

Maritime surveillance

Arctic region coverage

Complement to military missions

Space surveillance

- Leverage multiple sources, including: •
 - GOVSATCOM High Level Civil Military User Needs for Governmental Satellite Communications
 - ENTRUSTED project, coordinated by EUSPA with participation of MS
 - Industry experience in national governmental projects
- 19 use cases considered: governmental • needs are diverse, fragmented and based on multiple standards
- System design is driven by
 - Security and robustness
 - Flexibility
- System size is not driven by governmental bandwidth demand

Commercial use cases:

MASS-MARKET

5G / 6G integration Edge computing (edge in the sky) Autonomous driving e-health Smart working, education In-Flight, maritime connectivity Smart agriculture

- Broadband and 5G use cases categorised into clusters:
 - Mobile Broadband
 - Fixed Broadband
 - Satellite Trunking for **B2B services**
 - Satellite access for transportation
 - Reinforcement of terrestrial networks (resilience)
 - Cloud based services
- Forecasted demand expected to quadruple by 2040: Satellite-based solution scalable to meet demand

EuroQCI use cases

EUROQCI

Government and institutional users

Data centres

Satellite communication networks

Terrestrial communication networks

Banking industry

Other industries

- User requirements for EuroQCI have been discussed with MS sherpas group
- Quantum encryption will serve both EU private and governmental users requiring the highest robustness against forthcoming cyber threats (incl. quantum computing)
- Limited bandwidth required keys distribution only in a first stage
- Integration approach of EuroQCI in Secure Connectivity system being assessed

Synergies and added-value

SBSS (Satellite Based Space Surveillance) Contribution to SST

Methodology

Key frequency filings portfolio

GOVERNMENTAL USE

- Secured filing in the Ka-band (NATO)
 - French filing elaborated in Summer 2020
 - Submitted to ITU October 2020
 - Confirmed regulatory status April 2021
 - Excellent regulatory priority
 - Supports up to 19,000 satellites in various LEO and MEO configurations

COMMERCIAL USE

- Ku-band LEO: negotiation in progress
 - · Filing has high priority, shared with another system
 - French authorities aim to enable the filing to be used by both systems
 - 200 satellites for EU use more could be added via a new filing if needed
- Ka and Q/V bands LEO: options still under consideration
- Ka-band MEO: capacity available for 24 satellites
 - Already partially in use, good priority
- Existing GEO capacity Ku, Ka, Q/V bands, 6-10 sats (Various EU MS filings)
- Potential for other filings to be used for broadband including next generation frequencies (Q/V band LEO with excellent priority) – keeping options open
- Filing options identified for other specific use cases (e.g. ADS-B)

Filing governance similar to Galileo could be considered or other appropriate mechanism

Four candidate architectures retained

	SCENADIOS	Coverage of Demand	
	SCENARIOS		2030-2040
1 Small LEO	 GEO MEO 80 LEO BB (700kg) 	 Gov: 100% Com: 28% 	• Gov: 100% • Com: 4%
2 « Pivot » Large LEO	 GEO MEO 200 LEO BB (700kg) 	Gov: 100%Com: 100%	 Gov: 100% Com: 33%
3 « Pivot » + Very Large LEO	 GEO MEO 200 LEO BB (700kg) +1 000 (350kg) LEO BB 	Gov: 100%Com: 100%	• Gov: 100% • Com: 67%
4 « Pivot » + 5G mobile	 GEO MEO 200 LEO BB (700kg) 440 LEO 5G 	Gov: 100%Com: 100%	• Gov: 100% • Com: 33%

The constellation geometry is currently being assessed for each candidate architecture

ILLUSTRATIVE

Potential incremental approach

ILLUSTRATIVE

1 LEGACY

Secure by design : 360° approach

TARGETED USER NEEDS

- Government and defence users:
 - Access guarantees and anonymity
- Commercial users:
 - Confidentiality/Privacy

REQUIREMENTS

- Relevant Norms and Standards from industry
- Approach for cybersecurity aligned with Galileo :
 - Cyber Hardening
 - Security Operation center (SOC)
- Inter satellite links

THREATS

- State sponsored and insiders attackers
- Emerging threats :
 - Quantum computers
 - Threat coming from space
- Supply chain risks

DESIGN APPROACH

- End-to-end: Covers full life cycle of the system
- Anticipated since early concept
- Ready for accreditation

Secure by design : study state of play and way forward

USER NEEDS

- Assessement of user needs is mature
 - "GOVSATCOM type" requirements for governemental users
 - Privacy for mass market

REQUIREMENTS

- Standards and policies injected
- Security architecture with key elements to be defined with the architecture

THREATS

- Threat sources considered up to highest level
- Construction of high level scenarios and associated risk treatments

DESIGN APPROACH

7

360

P

- Risk and threat analysis, Security classification guide and SSRS have been initiated
- To be refined with the architecture

EuroQCI

- System design work in progress: different options of orbits and QKD concepts are being considered:
 - Quantum payloads embarked on-board the secure connectivity system satellites;
 - The EuroQCI space segment implemented separately from the space segment of the secure connectivity system as an overlay service, but fully interconnected and interoperating with the secure connectivity system satellites.
- Test satellite (Eagle1) foreseen in 2023
- Security risk assessment initiated

A leading-edge technology roadmap to develop a breakthrough system

Technology maturity assessment

		Added value to system		
		Low no major advantage	Medium will provide some advantages w.r.t. competition	High could reduce cost/ increase performance or may support additional services
Robustness of EU ecosystem	Underdeveloped No EU Ecosystem		 1 technology identified 6G satellite radio protocol 	 2 technologies identified Q/V band user terminal Accommodation under launcher fairing without dispenser
	Growing Few initiatives - EU ecosystem could be improved		 26 technologies identified DTN protocols Torrent protocols Network coding Low microvibration reaction wheel User terminals SDR modem Optical link acquisition without position knowledge of user terminal Mobile optical user terminals Cloud-based architecture Ground Segment Space - SIEM BIGSIS 	 44 technologies identified 4G NB-IoT radio protocol with NTN features 5G New Radio protocol with NTN features Intent-based networking (IBN) Space cloud solution Themis reusability demonstrator Very high throughput broadband terminals User Terminal active antennas TT&C SDR Modems Satellite Ka-band SSPA (higher efficiency)
	Well developed Strong heritage from EU - strong EU ecosystem already available	 1 technology identified Accommodation under launcher fairing using a dedicated dispenser 	18 technologies identified	38 technologies identified

Summary

Achievements

- Use cases have been thoroughly identified, characterised and consolidated
- Suitable frequencies identified
- Shortlist of candidate scenarios for system design have been defined
- EuroQCI/Govsatcom Hub in progress
- Technology roadmap charted
- Security needs identified

Next steps

- Further assess Synergies with Space Programme
- Consolidate frequencies filings portfolio
- Refine, consolidate and narrow down scenarios taking into account technology choices

Continue risk & threat analyses and prepare security requirements

Questions and Answers

Preliminary analysis of exploitation models

Service provision and exploitation schemes

2a - CONCESSION – Main Hypotheses

Who is responsible for & takes the risk of		
Funding	Public	
Specification	Public	
Procurement / Design to Spec	Public	
Manufacturing	Private	
Space	Public	
Operation of infra & Service Delivery	Private	
Maintain	Private	
Go-to-Market	Private	
Ownership	Public	

2b - PUBLIC + – Main Hypotheses

Who is responsible for & takes the risk of		
Funding	Mission Dependent	
Specification	Mission Dependent	
Procurement / Design to Spec	Mission Dependent	
Manufacturing	Private	
Space	Mission Dependent	
Operation of infra & Service Delivery	Private	
Maintain	Private	
Go-to-Market	Mission Dependent	
Ownership	Mission Dependent	

2c - PRIVATE + – Main Hypotheses

Who is responsible for & takes the risk of		
Funding	Public & Private	
Specification	Public & Private	
Procurement / Design to Spec	Private	
Manufacturing	Private	
Space	Private	
Operation of infra & Service Delivery	Private	
Maintain	Private	
Go-to-Market	Mostly Private	
Ownership	Mostly Private	

Summary

Achievements

- Various PPP models defined and aligned with technical scenarios
- Risk shareline principles defined

Next steps

- Principles to converge towards one preferred scenario to be decided
 - Governance of service provision and related legal arrangements
 - Security governance and operations
 - Cost/funding options and mechanisms

Questions and Answers

Upcoming activities

Upcoming activities

EU New Space study

- Foster an opportunity for the participation of European New Space and enable networking
- Interactive information exchange
- 3 days matchmaking

• To be launched mid-June

